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Abstract—Data is becoming an important kind of commercial
good, and many online data marketplaces are set up to facilitate
the trading of data. However, most existing data market models
and the corresponding pricing mechanisms are simple, and fail
to capture the unique economic properties of data. In this paper,
we first characterize the distinctive features of IoT data as a
commodity, and then present a new IoT data market model from
an information design perspective. We further propose a family
of data pricing mechanisms for revenue maximization under
different market settings. Our MSimple mechanism extracts
full surplus from the market for the model with one type of
buyer. When multiple types of buyers coexist, our MGeneral
mechanism optimally solves the problem of revenue maximization
by formulating it as a polynomial size convex program. For a
more practical setting where buyers have bounded rationality,
we design MPractical mechanism with a tight logarithmic ap-
proximation ratio. We evaluate our pricing mechanisms on a
real-world ambient sound dataset. Evaluation results show our
pricing mechanisms achieve good performance and approach the
revenue upper bound.

I. INTRODUCTION

Data is becoming a commodity. It has tremendous value
to both its owner and other parties who want to integrate it
into their services. A number of online data marketplaces are
emerging to enable data sharing and trading over the Internet,
facilitating various data-based services, such as targeted adver-
tising and business decision making. For example, Gnip [1]
aggregates and sells social media data from Twitter before
the General Data Protection Regulation(GDPR); Xignite [2]
vends real-time financial data; and Here [3] trades tracking
and positioning data for location-based advertising.

Among various online data marketplaces, several compa-
nies [4]–[6] focus on data from Internet of Things (IoT). IoT
data marketplaces allow different stakeholders to share the
sensor network infrastructure, and facilitate many city services
such as waste management and environment monitoring [7],
traffic jam avoidance [8], smart agriculture and weather fore-
casting [9], and etc. Data from widely deployed sensors are
more accurate and granular than the coarse-grained data from
the national weather or traffic services. For example, IOTA [4]
is a blockchain-based data marketplace for aggregating and
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selling IoT data, and DataBroker DAO [6] is a peer to peer
marketplace for IoT sensor data.

One major drawback of existing data marketplaces is that
the pricing mechanism for data trading is still very primary:
the data brokers either adopt a fixed price mechanism [4], or
choose to negotiate with the buyer offline [2]. Although there
are some existing work dedicated to designing flexible data
pricing mechanisms, most of them only support structured and
relational data [10], [11], fail to capture the unique features of
IoT data as a commodity, and ignore the economic objective
of the data seller. In this work, we aim to analyze the unique
economic properties of IoT data, and then design proper
pricing mechanisms to achieve revenue maximization.

In the following, we list four properties of IoT data as a
commodity that could heavily influence the trading model and
pricing mechanism design.

• First, IoT data generally falls into the category of digital
goods, and can be reproduced with a neglectable marginal cost.
Due to such cost feature, a buyer can easily generate a new
copy of the raw data, and resell it at a lower price, making
the data easy to pirate. Traditional copyright techniques can
hardly resist such piratical behavior. To resolve this problem,
we propose that the data seller should sell data services instead
of raw data. This sale strategy can also preserve the privacy
of data owner to some extent. The data services could be the
mean, median, and maximum values of aggregated data, or
the results of performing data mining techniques on the data.

• Second, the valuation of IoT data does not necessarily
depend on data volume, but depend on the amount of in-
formation it provides. This property differentiates IoT data
from traditional commodities including digital goods. A large
volume of noisy data from low standard sensors could have
less valuation than a small set of precise data from a pro-
fessional sensor. One fundamental question in data trading is:
how to quantify the valuation of data in the market? In the
context of IoT applications, based on the information extracted
from sensed data, buyers always take actions to earn certain
utility. Therefore, we measure buyer’s valuation towards a set
of data by how the data guides the buyer’s action. For example,
suppose you are going out on a sunny day and you do not
consider it necessary to take an umbrella with you. In this
case, a large set of humidity sensor data confirming a long
sunny day does not generate much valuation to you. On the
contrary, a set of sensor data forecasting a heavy rain one hour
later generates high valuation to you, as it changes your action



by guiding you to take an umbrella with you.
• Third, the price of data might have correlation with the

information behind the data, and thus releasing the price of
data could leak the information of data. Suppose the data
seller in the previous “umbrella” example sets $1 and $2 for
the “sunny” data set and the “rainy” data set, respectively.
A buyer could distinguish these two data sets through only
observing the corresponding prices, as the rainy data set
contains more information and has a higher price. Since buyers
are willing to pay a higher price for the rainy data set, the
seller would lose revenue if he reduces the price of this
data set to $1. We therefore argue that, in order to avoid
information leakage before data trading, the seller should not
set explicit prices related to data content, but instead should
declare prices independent of the specific values of data. For
example, one possible qualified pricing scheme is: charge $1
for a weather data set with 75% accuracy, and charge $2 for
95% accuracy. Such content-independent pricing schemes do
not leak information about the actual data values.

• Fourth, time-sensitive IoT applications require the price
of IoT data should be determined before data is actually
generated. In many real world use cases of IoT data, the data
buyer requires the data stream to be fed in real-time [12], and
thus it is impractical to calculate the price in an online manner.
Most of existing work cannot handle this unique feature of IoT
data, as they always assume the data is sold after it is collected,
structured or modeled [10], [11]. Considering the valuation of
data is highly sensitive to the timing, the commodity being
sold in IoT data marketplaces should not be the data itself,
but rather the permission of data access in a future period of
time. This feature of IoT data raises a challenging problem:
how do sellers persuade buyers to purchase the data when they
still have not collected data?

Besides the four features mentioned above, the revenue
maximization problem has many additional challenges. As
the seller does not know the valuation of each individual
buyer, he has to determine the price of data under incomplete
information. Moreover, with various types of buyers in the
market, an optimal pricing mechanism should perform market
segmentation or price discrimination among different buyers.
Under such flexible pricing mechanisms, the data seller should
manage to preclude the potential strategic behavior of buyers.

Jointly considering the previous challenges, in this paper,
we present a market model of trading IoT data from an infor-
mation design perspective that captures the aforementioned
unique features of IoT data. First, the seller in our model
provides data services to buyers by sending various signals,
rather than feeding raw data. Second, we define the valuation
of data as buyer’s utility increment due to the action change
after buying data. Finally, the seller designs and publishes
the pricing schemes before actually collecting the data, and
incentivizes buyers to purchase data by giving them high
expected utility increments. This timing enables the trading
data to be collected in the future, and ensures that prices never
leak information about the actual data values.

We summarize our contributions in this paper as follows:

• First, we characterize four unique features of IoT data
as a commodity that differentiate IoT data from traditional
goods. We present a market model from an information design
perspective that fully captures these features.

• Second, we design revenue-maximizing pricing mecha-
nisms under different market settings. We first consider a
simple setting where only one type of buyer exists in the
market, and propose MSimple mechanism that extracts full
surplus from the market. We then consider the general setting
where different types of buyers coexist in the market. We
present MGeneral mechanism to this setting, and prove there
exists a polynomial time solution by formulating the problem
of revenue maximization as a convex program. We further
present MPractical mechanism to a more practical setting
where buyers have bounded rationality. We prove MPractical
achieves logarithmic approximation ratio towards the optimal
revenue, which is the upper bound of any mechanism of
constant size.

• Finally, we evaluate our pricing mechanisms on a real-
world ambient sound dataset. We test the influence of different
parameters in the market model, and show that our mecha-
nisms achieve good performance.

The rest of the paper is organized as follows. In Section II,
we introduce our market model and necessary notations. In
Section III, we present our pricing mechanisms to different
market settings. We evaluate our pricing mechanisms in Sec-
tion IV. In Section V, we briefly review related work in the
literature. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES

We consider the intersection between a data seller and
multiple data buyers. The data commodity in the IoT data
market is the state of nature, denoted by a random variable
ω drawn from a sample space Ω = {ω1, ω2, . . . , ωn}. The
random variable ω could denote a particular numerical value.
For example, ω can be the mean value of a set of noise
sensors near street, and correspondingly Ω is a discrete set
of numerical values for possible noise levels. The random
variable ω could also denote the data service extracted from
raw data. For example, the seller can aggregate data from
various sources–street noise sensors, traffic camera videos,
crowdsourced pedestrian traces–to analyze the traffic condition
of a certain street. The analytical result is sold to buyers as a
data service. In this case the nature state ω is chosen from a
binary set Ω = {Crowded,NotCrowded}.

The seller trades the data through publishing a menu
M = {(I, tI)}, which contains multiple pricing schemes.
Each buyer chooses a pricing scheme (I, tI) that maximizes
her expected utility, which will be defined later. Each pricing
scheme contains an experiment1 I and a corresponding price
tI . An experiment I = {S, P} contains a set S of possible
signals2, and an n× |S| right probability matrix P = [ pij ],

1An experiment is also called an information structure in the literature.
2We abstract different responses from the seller as different signals. In the

context of IoT data market, reporting different probabilities of precipitation
to the buyer can be regarded as sending different signals.



Fig. 1. Data trading process.

1 ≤ i ≤ n, 1 ≤ j ≤ |S|, where 0 ≤ pij ≤ 1 and∑|S|
j=1 pij = 1. The interpretation of pij is the probability

that the seller sends signal sj ∈ S to the buyer when the true
nature state is ωi, i.e., pij = Pr (sj | ωi).

Consider two special types of experiment here: full-
information experiment Ī and no-information experiment I .
In the full information case, we assume that |S| = n and P
is a diagonal matrix of size n × n. In such case, the seller
directly tells the buyer his entire knowledge about the nature
state. Specifically, once the seller observes the nature state as
ωi, he will always send signal si to the buyer. From the buyer’s
perspective, upon receiving signal si, she is fully confident that
the true nature state is ωi. In the no-information experiment I ,
the seller uniformly selects a signal from S and sends it to the
buyer, regardless of the true nature state, i.e., pij = 1/|S| for
all 1 ≤ i ≤ n, 1 ≤ j ≤ |S|. The buyer gains no information
from this experiment, and thus the no-information experiment
can be used to fully obfuscate the nature state.

The buyer is uncertain about the true state of nature,
and seeks to buy data (or data services) from the seller to
supplement her knowledge. We assume the buyer has a prior
estimation of the nature state before buying data. The buyer
may have previously bought data from the same sensors, and
this relatively out-of-date data can help her form a good
estimation, due to data correlation in time dimension. We
denote the prior distribution for the random variable ω as
θ = (θ1, θ2, . . . , θn) ∈ ∆Ω,3 where 0 ≤ θi ≤ 1 and∑n
i=1 θi = 1. The parameter θi denotes the probability that

the nature state is ωi, i.e., θi = Pr(ωi). We also call the prior
distribution θ as the private type of buyer. We assume that
the type θ is drawn from a finite set Θ with an independent
and identical distribution F (θ) ∈ ∆Θ. We further assume the
cumulative distribution function F (θ) is public information.

In many IoT applications, the buyer usually faces a decision
problem, and has to choose an action a from a finite set A,
based on her perception over the nature state. Let uθ(ω, a)
denote the utility of the buyer with type θ when the nature
state is ω and action a is taken. Without purchasing data from

3∆Ω denotes the probability distributions over Ω.

the seller, the buyer has to base her decision only on her prior
estimation θ, and the expected utility is

u(θ) = max
a

Eω [uθ(ω, a)] = max
a

n∑
i=1

θiuθ(ωi, a). (1)

After receiving signal sj from the seller, the buyer θ updates
her estimation of the nature state using Bayes’ rule:

Pr (ωi | sj) =
Pr (sj | ωi) Pr(ωi)

Pr(sj)
=

pij · θi∑n
k=1 pkj · θk

, (2)

and her expected utility turns to

u(θ, sj) = max
a

Eω [uθ(w, a) | sj ]

= max
a

n∑
i=1

Pr (ωi | sj)uθ(ωi, a). (3)

Given an experiment I , from buyer θ’s point of view, the
probability of receiving signal sj is

Pr(sj) =
n∑
i=1

Pr(ωi)Pr (sj | ωi) =

n∑
i=1

θipij .

The buyer’s expected utility after buying experiment I is

u(θ, I) =

|S|∑
j=1

Pr(sj)u(θ, sj). (4)

Therefore, combining the four equations above, buyer θ’s
utility increment for buying experiment I is

v(θ, I) = u(θ, I)− u(θ) =

|S|∑
j=1

Pr(sj)u(θ, sj)− u(θ)

=

|S|∑
j=1

(
n∑
i=1

θipij

)(
max
a

n∑
i=1

pijθi∑n
k=1 pkjθk

uθ(ωi, a)

)

−max
a

n∑
i=1

θiuθ(ωi, a)

=

|S|∑
j=1

max
a

n∑
i=1

θipijuθ(ωi, a)−max
a

n∑
i=1

θiuθ(ωi, a).

We assume buyer θ is willing to buy experiment I if and only
if the price tI is no larger than her utility increment. More
specifically, we have the following Individual Rationality
(I.R.) constraint:

v(θ, I)− tI ≥ 0, ∀θ ∈ Θ. (I.R.)

We use Figure 1 to summarize the whole data trading
process. The timing of this process is as follows: First, the
seller designs a menuM = {(I, tI)} and posts it to the public.
Second, the buyer θ chooses a pricing scheme (I, tI) with the
largest utility increment v(θ, I) from the menu, and pays the
corresponding price tI . Third, the true nature state ω is realized
and revealed to the seller. The seller sends a signal sj to the
buyer following the rule in the selected experiment I . Finally,
after receiving the signal sj , the buyer chooses an action a



with the maximum expected utility according to Equation (3).
The buyer’s utility uθ(ω, a) is then realized.

We remark on four facts about our data market model. First,
the seller does not sell raw data to the buyer, but instead
extracts different signals from data. Second, we measure the
valuation of data as buyer’s utility increment due to the action
change after buying data, which is independent of the data
volume. Third, the seller sets prices to different experiments
rather than data content, and the buyer pays the seller before
the nature state is realized. In this case, the prices in the menu
never leak information about the actual data values. Finally,
the seller prices the data before it is actually collected, which
satisfies the real-time data requirement of IoT applications.
We further assume the seller is committed to the designed
pricing schemes. Once the buyer selects a pricing scheme,
the seller will strictly follows the rule of the experiment and
sends signals to the buyer according to the predefined proba-
bility matrix. Such seller commitment can be implemented in
practice via a smart contract inside a blockchain [13].

In the full version [14] of this paper, we provide a simple
and concrete example to demonstrate our data trading process.

III. DATA PRICING MECHANISM

In this section, we present our data pricing mechanisms
for the problem of revenue maximization. We begin with a
special case where there exists only one type of buyer, and
design a simple mechanism, namely MSimple, that extracts
full surplus from buyers. We then step into the general setting
with multiple different buyer types. We present the MGeneral
mechanism to this setting, and prove there exists a polynomial
time solution by formulating the problem of revenue maxi-
mization as a convex program. Finally, we consider a simple
but practical case where buyers have bounded rationality [15],
which additionally requires the seller’s menu to be constant
size. We present the MPractical mechanism, and prove the
revenue loss with respective to the optimal revenue.

A. A Warm-Up Case

We first consider a simple case, where only one type of
buyer θ exists in the market, i.e., Θ = {θ} and F (θ) = 1. This
corresponds to the situation where buyers have no other source
of data, and have a common prior estimation of nature. Since
buyers are homogeneous, the only constraint in this problem
is the I.R. property. In this case, the optimal menu contains
only one pricing scheme (I, tI). The revenue maximization
problem of MSimple can be formulated by

max tI ,

s.t. v(θ, I)− tI ≥ 0, (I.R.)
|S|∑
j=1

pij = 1, ∀i,

pij , tI ≥ 0, ∀i, j.

This is equivalent to finding an experiment that maximizes
buyer’s utility increment v(θ, I). As we will prove in Theo-

rem 1, the full-information experiment Ī is always a utility-
maximizing experiment. Therefore, the optimal pricing scheme
is simply a full-information experiment Ī , along with a price
that is equal to the utility increment of the buyer.

Theorem 1. For the single buyer type case, the optimal
pricing scheme is a full-information experiment Ī with price
tĪ =

∑n
i=1 θi maxa uθ(ωi, a)−maxa

∑n
i=1 θiuθ(ωi, a).

Proof. For any experiment I , define aj as buyer’s op-
timal action when she receives signal sj , i.e., aj =
arg maxa Eω [uθ(ω, a) | sj ]. We then have

tI ≤ v(θ, I) =

|S|∑
j=1

max
a

n∑
i=1

θipijuθ(ωi, a)− u(θ) (5)

=

|S|∑
j=1

n∑
i=1

θipijuθ(ωi, aj)− u(θ) (6)

=

n∑
i=1

θi

 |S|∑
j=1

pijuθ(ωi, aj)

− u(θ) (7)

≤
n∑
i=1

θi max
a

uθ(ωi, a)− u(θ) (8)

=u(θ, Ī)− u(θ) (9)

The first inequality comes from the I.R. constraint. The
first equality is by the definition of utility increment. The
equality (6) holds due to the definition of aj . The equality (7)
is derived from switching the order of summation. The in-
equality (8) is by setting the pij with largest uθ(ωi, aj) value
to be 1 and others to be 0. The equality (9) follows from the
definition of u(θ, Ī) — the buyer is fully informed about the
true nature state, and she can take exactly the optimal action
for any nature state ωi.

From the preceding derivations, we can easily verify that
the full-information experiment generates the largest utility
increment among all possible experiments, and maximizes the
revenue of the seller. Replacing u(θ) in equality (8) with its
definition in Equation (1), we get the optimal price tĪ for the
experiment Ī . Since there is only one type of buyer in this
simple case, the seller knows the value of every θi. Therefore,
the optimal price can be exactly calculated by the seller.

In this simple case, there is only one kind of buyer in the
market, and the seller is clear about the type of every buyer he
intersects with, and thus can extract full surplus from buyers.

B. The General Case

We further consider the general setting, in which different
types of buyers coexist in the market. Considering more fine-
grained menu can extract higher revenue from the market, we
seek to design a discriminatory pricing scheme (Iθ, tθ) for
each type θ. To avoid the potential strategic behavior of buyers,
we need to guarantee that each buyer will indeed choose the
pricing scheme we design for her, and has no incentive to



choose other pricing schemes. This leads to the following
Incentive Compatible (I.C.) constraint:

v(θ, Iθ)− tθ ≥ v(θ, Iθ′)− tθ′ , ∀θ, θ′ ∈ Θ. (I.C.)

Without loss of generality, we assume whenever the buyer is
indifferent between buying (Iθ, tθ) and not buying, she always
chooses to buy. The problem of revenue maximization in this
general case can be formulated as follows:

max
∑
θ∈Θ

F (θ)tθ,

s.t. v(θ, Iθ)− tθ ≥ 0, ∀θ, (I.R.)
v(θ, Iθ)− tθ ≥ v(θ, Iθ′)− tθ′ , ∀θ, θ′, (I.C.)
|S|∑
j=1

pij = 1, ∀i, Iθ,

pij , tθ ≥ 0, ∀i, j, Iθ, tθ.

In such formulation, the feasible region is not convex,
resulting in high computational complexity of directly solving
this problem. To remove this non-convexity, we base our
solution on the classical idea of designing posteriors [16],
[17]. In the following, we will only sketch the main idea of our
solution, and leave the complete proofs to the full version [14]
of this paper.

The previous formulation considers an experiment from the
“row perspective”: In the experiment Iθ, we aim to assign
proper row probability pi over different signals in S to buyer
θ when the nature state is ωi. From the “row perspective”,
the experiment Iθ can be expressed by the matrix P and
prior distribution θ. Now we present a different perspective to
express an experiment Iθ. For easy illustration, we define two
notations. We use vector qj = (q1j , q2j , · · · , qnj)T ∈ ∆(Ω)
to denote the posterior distribution Pr (ω | sj) after receiving
the signal sj , where qij is the posterior probability that the
nature state is ωi, i.e., qij = Pr (ωi | sj). We also denote
matrix Q = (q1, q2, · · · , q|S|). Let xθ = {xθj : sj ∈ S}.
Here, xθj denotes the probability of receiving signal sj in
the experiment Iθ, i.e., xθj = Pr(sj). From this “column
perspective”, the experiment can be expressed via matrix Q
and vector xθ. The following lemma states that we can express
the experiment Iθ equivalently from the “row perspective” and
“column perspective” under certain conditions.

Lemma 1. It is equivalent to define an experiment Iθ from
the row perspective with P = [pij ] and from the column
perspective with xθ, Q = [qij ], if and only if:

|S|∑
j=1

xθjqij = θi, ∀i ∈ [n]. (E.Q.)

Proof. We leave the proof of Lemma 1 to the full version [14]
of this paper due to space limitation.

We propose the following lemma to show that assuming
the posterior qj is chosen from a pre-computed finite subset of
∆(Ω) will generate equivalent revenue as assuming it is chosen

from an infinite continuous space. The idea of this lemma
corresponds to the “interesting posteriors” defined in [17].

Lemma 2. Given the buyer type space Θ, restricting the
candidate values of posterior distribution qj to a finite set
Q∗ ⊂ ∆(Ω) that can be pre-computed does not reduce the
optimal revenue.

Proof. We leave the proof of Lemma 2 to the full version [14]
of this paper due to space limitation.

Now we can rewrite the problem of revenue maximization
from the column perspective as a linear program:

LP max
∑
θ∈Θ

F (θ)tθ,

s.t.
|S|∑
j=1

xθju(θ, sj)− u(θ)− tθ ≥ 0, ∀θ, (I.R.)

|S|∑
j=1

xθju(θ, sj)− tθ ≥
|S|∑
j=1

xθ
′

j u(θ, sj)− tθ′ ,∀θ, θ′,

(I.C.)
|S|∑
j=1

xθjqij = θi, ∀i, θ, (E.Q.)

xθj , tθ ≥ 0, ∀j, θ.

An immediate corollary of Lemma 2 is that LP contains
polynomial number of constraints but exponential number
of variables. In seeking a solution with polynomial time
complexity, we take the dual of LP as follows:

DLP min
∑
i,θ

yθ,iθi −
∑
θ

u(θ)gθ,

s.t.
∑
θ′ 6=θ

(hθ,θ′ − hθ′,θ) + gθ ≥ F (θ), ∀θ,∑
θ′ 6=θ

hθ′,θu(θ′, sj)−
∑
θ′ 6=θ

hθ,θ′u(θ, sj)

≥ gθu(θ, sj)−
∑
i

yθ,iqij , ∀j, θ,

hθ,θ′ ≥ 0, gθ ≥ 0, yθ,i ∈ R, ∀i, θ, θ′.

This dual linear program contains O(|Θ|2 + |Θ| · |Ω|) variables
and finitely many constraints. For a polynomial time solution,
we need to find a separation oracle for the second family of
constraints. Based on the solution in [17], since u(θ, sj) takes
the maximum over |A| linear functions, we can substitute each
constraint in the second family with |A| equivalent constraints.
Checking if all the |A| constraints are satisfied by all qj is
equivalent to solving the following problem:

min
∑
i

yθ,iqij −

gθ +
∑
θ′ 6=θ

hθ,θ′

 n∑
i=1

qijuθ(ωi, a)

+
∑
θ′ 6=θ

hθ′,θu(θ′, sj), ∀θ ∈ Θ, a ∈ A, qj ∈ ∆(Ω).



As this is a convex program that can be solved exactly in
polynomial time with the standard technique from optimiza-
tion theory, we can conclude the main result in the general
case in the following theorem.

Theorem 2. MGeneral finds the revenue-maximizing menu in
polynomial time of |Ω| and |Θ|, by solving the dual linear
programming problem DLP.

C. A Practical Case

A potential problem with MGeneral mechanism is that its
menu size can be as large as the number of buyers, making it
hard to be implemented in some practical context. For a large
data marketplace with thousands of buyer types, each buyer
has to look through all the pricing schemes to find the one
that optimizes her utility. Although automated trading agents
or bots are commonly utilized in modern online markets,
performing Bayesian belief updates for each pricing scheme
can still be computationally burdensome even for a computer
agent. On the seller’s point of view, calculating the optimal
menu requires solving a convex program that involves perhaps
thousands of variables, which is also time-consuming in high-
frequency online markets.

In this part, we present our solution to a more practical sce-
nario, where agents are computationally bounded. We prefer
a menu with explicit and closed-form representation, instead
of referring to solving a convex programming problem. We
further require our menu to have a constant size, listing only
a constant number of pricing schemes for human buyers to
choose from, as the existing data marketplaces do [1], [18].

Our simple mechanism MPractical satisfies the preceding
requirements. MPractical either offers a buyer the most accu-
rate data with a fixed price, or sells nothing to the buyer. More
specifically, this menu contains two pricing schemes: a full-
information experiment Ī with a fixed price t̄ for all buyers,
and a no-information experiment I with zero price. The no-
information experiment gives the buyer a chance to safely
opt out when she cannot extract non-negative utility from
the purchase, and thus the I.R. property is always guaranteed.
Suppose there are in total N buyers in the market. The price
p̄ for the full-information experiment is simply the price that
maximizes seller’s expected revenue:

t̄ = arg max
t

∑
θ

N · F (θ) · t · 1
[
v(θ, Ī) ≥ t̄

]
,

where the indicator function 1
[
v(θ, Ī) ≥ t̄

]
=

1 [
∑n
i=1 θi maxa uθ(ωi, a)− u(θ) ≥ t] denotes whether

the buyer can extract non-negative utility.
A natural question is, how much revenue will the seller lose

if he employs MPractical instead of the optimal MGeneral? In
the following, we show that MPractical can achieve Ω( 1

log|Θ| )
revenue of MGeneral even in the worst case.

For easier illustration, we first introduce a few notations.
Let R denote the revenue of MPractical, and S denote the
sum of all buyers utility increment towards the full-information
experiment, i.e., S =

∑
θN ·F (θ) ·v(θ, Ī), which is obviously

the revenue upper bound of any pricing mechanism. We
assume the number of buyers for each type is upper bounded
by a constant c, i.e., N ≤ c |Θ|. We normalize buyers’ utility
increment v(θ, Ī) into the range [1, h] by properly scaling the
values of the utility function uθ(ω, a). Here, h denotes the
largest utility increment of the buyers, i.e., h = maxθ v(θ, Ī).
We then have the following theorem:

Theorem 3. Assuming S ≥ 2h, the approximation ratio of
MPractical is R/S = Ω( 1

log|Θ| ).

Proof. Divide the buyer utility increments into log h bins by
a power of two. For each utility increment v(θ, Ī) in bin Bk
(0 ≤ k < log h), we have 2k ≤ v(θ, Ī) < 2k+1. Since the
utility increments sum up to S and there are log h bins, there
exists a bin Bk such that the sum of all utility increments in
Bk is no smaller than S/ log h. If we set the price to be the
lowest utility increment in Bk, the generated revenue Rk will
be at least S/(2 log h), since the lowest utility increment is at
least half of any other utility increment in Bk. We now have
R ≥ Rk ≥ S/(2 log h) since R is the revenue generated by
the optimal price t̄, which clearly yields revenue no lower than
Rk.

Define v∗ to be the smallest utility increment such that all
the utility increments below v∗ sum up to at least S/2. We
then have v∗ ≥ h/N , otherwise the sum of utility increments
below v∗ is smaller than Nv∗ < h ≤ S/2, which contradicts
our definition of v∗. We now ignore all the buyers with
utility increment below v∗. Denote the optimal price for the
remaining buyers as t∗ and the corresponding revenue as R∗.
According to the result from last paragraph, we now have

R∗ ≥ S/2
2 log(h/v∗)

≥ S
4 logN

.

Since Rk is the revenue extracted from a larger set of buyers,
we have Rk ≥ R∗. Combining all the results leads to

R ≥ Rk ≥ R∗ ≥
S

4 logN
≥ S

4 log c |Θ|
.

This finishes our proof of R/S = Ω( 1
log|Θ| ).

Theorem 3 relies on a simple and reasonable assumption
that S ≥ 2h. This assumption requires the sum of all buyers’
utility increments to be at least twice of any single buyer,
which easily holds in practice when the number of buyers is
reasonably large. In the following theorem, we will show that
the approximation ratio in Theorem 3 is tight in the worst
case: this logarithmic lower bound is actually also the upper
bound for any menu of constant size.

Theorem 4. There exist cases where no menu of constant size
can achieve more than O( 1

log|Θ| ) revenue of MGeneral, even
when the S ≥ 2h assumption holds true.

Proof. We explicitly construct the following example. Assume
there are N buyers coming from N different types. We number
the buyers from 1 to N and set the utility increment of buyer i
to be vi = N

i (1 ≤ i ≤ N ). Without loss of generality, we can
assume the price for any experiment is chosen from a finite
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Fig. 2. Average revenue under different number of nature states.
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Fig. 3. Average revenue under different number of buyer types.

set {N,N/2, N/3, . . . , 1}. It is easy to see that when adding
a pricing scheme of price t = N/i to the menu, at most i
more buyers will have the incentive to buy the data, leading
to the additional revenue of no more than N . Since the menu
contains constant number of pricing schemes, the revenue of
any constant size menu is upper bounded by O(N).

Now we will show the optimal mechanism can indeed
extract the full revenue of Ω(N logN) in the previous setting.
Let the size of nature state set be |Ω| = 2N . In this
case, each buyer i can be represented by a type vector
θi = (θi,1, θi,2, . . . , θi,2N ). For buyer i, we set θi,j to be 0
for all j, except for θi,2i−1 = θi,2i = 1

2 . In this sense, buyer
i only cares about the data concerning nature state ω2i−1

and ω2i. In our example, all buyers share the same utility
function u(ω, a) defined as: (1) u(ωi, aj) = 0 if i 6= j. (2)
u(ω2i−1, a2i−1) = u(ω2i, a2i) = 2N

i ,∀1 ≤ i ≤ N .
We construct the optimal menu as follows. For each buyer,

the pricing scheme we design for her gives her full information
on the two nature states she cares about, and no information
on the other states. Formally, for buyer i, we set p2i−1,2i−1 =
p2i,2i = 1, and all elements in the other rows of the experiment
matrix are set to 1

2N . Since the experiments designed for
the others bring no information increment to the buyer but
requires a positive price, each buyer is only interested in
her own pricing scheme, and hence the I.C. constraint is
always satisfied. The readers can verify that the buyers’ utility
increments are exactly vi = N/i, given the utility function
and experiments we designed. Finally, we charge a price of

N/i from buyer i (1 ≤ i ≤ N), and by doing so we extract
the full surplus of Ω(N logN) from the market.

We conclude that in our example, no constant size menu can
extract more than O( 1

log|Θ| ) of the optimal revenue, which is
achieved by MGeneral. Therefore, MPractical is indeed one of
the optimal mechanisms in the bounded computation case.

IV. EVALUATIONS

In this section, we evaluate our pricing mechanisms MGen-
eral and MPractical on a real-world ambient sound dataset,
and compare their performance with our benchmarks. The con-
vex programming parts in our mechanisms are implemented
using the Gurobi software [19].

A. Evaluation Setup

We use the Ambient Sound Monitoring Network [20]
dataset in our evaluation. The Dublin City Council collected
this dataset with a network of sound monitors to measure
the ambient sound quality at different sites of Dublin. This
dataset contains sound pressure data of every 5 minute from
15 monitoring sites in Dublin on each day from 2012 to 2015.
We use the sensory data from the Walkinstown monitoring site
on June 1st, 2015 in our evaluation, and we assume the buyer
priors are based on the sensory data of the same day in the
previous three years, ranging from 44dB to 68dB.

We discretize the interval [44, 68] into n intervals as the
sample space of the nature state. We consider three typical
families of prior distributions, including Gaussian distribution,
uniform distribution and Pareto distribution. Since we consider



different types of buyers in the market, we assume buyers of
the same distribution family differ from each other by the
distribution parameters: Gaussian distributions with different
mean values 44, 50, 56 and 62; uniform distribution over the
sub-intervals of [44, 68] with different lengths 6, 12, 18 and
24; and Pareto distributions with different values 0.1, 0.5, 0.9
and 1.3 of b for the generating formula f(x) = b

xb+1 .
We compare the revenue of our mechanisms with two

benchmarks, namely the Fully Revealing mechanism and
revenue Upper Bound. In the Fully Revealing mechanism,
the seller only offers the full-information experiment in his
menu, but still guarantees the I.C. and I.R. properties. This
mechanism is the optimal solution to a restricted version of
MGeneral mechanism, by additionally requiring all experi-
ments to be full-information. The revenue Upper Bound is
the sum of all buyers’ valuations towards the full-information
experiment, without guaranteeing the I.C. property. As the
Upper Bound extracts full surplus from all buyers, it is
obviously the revenue upper bound of any pricing mechanism.

B. Performance of Pricing Mechanisms

We first vary the size of sample space n from 2 to 12, and
evaluate its influence on the four pricing mechanisms. In this
set of evaluations, we fix the number of buyer types to be
|Θ| = 4, and simplify the utility of all buyers to be

uθ(ω, a) =

{
1, if ω = a,

0, otherwise,

which means that there is only one “correct” action under
each possible nature state, and these correct actions generate
one unit utility to the buyer. Figure 2 shows the average
revenue extracted from each buyer under three different prior
distributions. We can observe that for all the cases, MGen-
eral always generates higher revenue than MPractical and
Fully Revealing, and nearly approaches the revenue Upper
Bound. For Gaussian distributions, as the size n of sample
space increases, buyer prior distributions are more dispersed
over different possible nature states, indicating they are less
certain about the true nature state. In this sense, buyers’ prior
expected utilities u(θ) are generally low, and data from the
seller can bring high valuation to them. MGeneral makes
use of buyers’ uncertainty and almost extracts full surplus
when n is relatively large. When n = 12, MGeneral achieves
99.91% revenue of Upper Bound. For uniform distributions,
MGeneral extracts full surplus from buyers as Upper Bound
does, because uniform estimations indicate that buyers have
no prior knowledge of the true nature state. When n = 12,
MGeneral outperforms MPractical and Fully Revealing by
28.50% and 54.21%, respectively. For Pareto distributions,
the revenue for all mechanisms are lower compared with the
other two distributions, because buyers have more confident
prior estimations, and their prior expected utilities u(θ) are
already high. In this case, it is hard to extract high revenue
by providing data to the buyer, but MGeneral still generates
73.56% revenue of the very optimistic Upper Bound when
n = 12. Under all three distributions, the revenue of our
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distributions.

mechanisms increase with n. Since n denotes the discretization
level of data, we can conclude that the seller can extract higher
revenue by selling fine-grained data.

We then evaluate the impacts of the number of buyer types
on the four mechanisms. We report the evaluation results in
Figure 3, when the number of types |Θ| varies from 2 to
12 and the number of possible nature states n is fixed at 4.
As |Θ| increases, more types of buyers with heterogeneous
prior estimations appear in the market, and their strategic
behaviors raise more challenges to our pricing mechanisms.
For Gaussian and uniform distributions, the average revenue of
our mechanisms do not decrease as |Θ| grows. This indicates
that our mechanisms are robust against more types of strategic
buyers under these two distributions. For Pareto distributions,
however, the average revenue of our mechanisms decrease
with |Θ|. This is because buyers under Pareto distributions
are confident about their prior estimations and have higher
prior expected utilities before buying data from the seller. As
more confident types of buyers join the market, seller’s average
revenue from each buyer certainly decreases.

We finally test the influence of the standard deviation σ
in Gaussian distributions. We are interested in this parameter
because it denotes how confident the buyers are about their
prior estimations. We vary σ from 0.5 to 4.0, while fixing both
n and |Θ| to be 4. As we can see in Figure 4, MGeneral still
outperforms other mechanisms, and achieves 93.40% revenue
of Upper Bound when σ = 4.0. The average revenue of
all mechanisms increase with σ, because when buyers are
uncertain about the nature state, the data from the seller
can bring high utility increments to them. Therefore, we
can conclude that when buyers are not confident about their
prior knowledge, the seller can take advantage of buyers’
uncertainty and extract higher revenue.

V. RELATED WORK

In recent years, designing data pricing frameworks has
attracted increasing interests in the database community. Bal-
azinska et al. [21] first envisioned the emergence of cloud-
based data markets, and outlined potential challenges and
research opportunities. Following them, many query-based
frameworks have been proposed to price ad-hoc query data.



These frameworks allow the seller to manually assign prices
to a few views, and automatically extrapolate the prices to
other ad-hoc queries from the buyer. In [22], Koutris et al.
first identified two key properties that a pricing function must
satisfy, namely arbitrage-free and discount-free, and proposed
a polynomial time algorithm that derives the price for common
types of queries. Similar work include arbitrage-free pricing
functions for arbitrary queries [11], and a scalable framework
for pricing relational queries [23]. A set of accountable proto-
cols named AccountTrade was proposed in [24] for big data
trading among dishonest customers. These work assume that
data has already been collected and structured before being
priced, and their objective is not to maximize the revenue of
the seller.

Data marketplace has also been an active research topic
in the community of Internet of Things. Perera et al. [7]
surveyed smart city applications that can benefit from data
markets. An IoT data transfer framework for cloud-based ap-
plications was proposed in [25]. The authors in [26] designed
a decentralized infrastructure for IoT data trading based on
blockchain technologies, but they did not elaborate on the
pricing mechanisms. A two-sided market for crowdsensed data
was proposed in [27], and secondary market models for mobile
data were studied in [28]. In a recent paper, Zheng et al. [29]
took advantage of the geographical locality of sensor data,
and employed a versioning technique based on the accuracy of
data. Our work differs from previous work by further revealing
and utilizing the unique features of IoT data as a commodity.

Information design is a rapidly growing research area in
both computer science and economics literature. Different
from providing incentives to participators in mechanism design
problems, information design studies how to influence the
belief of participators by providing payoff-relevant information
to them through strategic interactions. A special yet influential
case called Bayesian persuasion, concerning one information
sender and one receiver, was studied in [30]. In a model
similar to ours [31], Bergemann et al. investigated the problem
where a buyer seeks supplemental information from the seller
to facilitate her decision making. As they sought optimal
solutions in the continuous space, they had to put strict
restrictions on the model to maintain tractability. In another
related work [17], Babaioff et al. considered the optimal
mechanism for selling information sequentially. [32] and [33]
provide excellent surveys of the information design literature.

VI. CONCLUSIONS

In this paper, we have studied the problem of revenue
maximization in IoT data markets. We have characterized the
unique economic properties of IoT data, and proposed a market
model accordingly from an information design perspective. We
have presented our pricing mechanisms that achieve optimal
revenue in different market settings. Evaluation results have
shown that our mechanisms achieve good performance and
approach the revenue upper bound.
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