
Adjusting Matching Algorithm to Adapt to
Workload Fluctuations in Content-based

Publish/Subscribe Systems
Shiyou Qian1,2, Weichao Mao1,2, Jian Cao1,2*, Frédéric Le Mouël3, and Minglu Li1

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2 Shanghai Institute for Advanced Communication and Data Science, Shanghai Jiao Tong University, Shanghai, China

3 CITI-INRIA Lab, INSA-Lyon, University of Lyon
* Corresponding Author

{qshiyou, maoweichao, cao-jian, mlli}@sjtu.edu.cn, frederic.le-mouel@insa-lyon.fr

Abstract—When facing fluctuating workloads, can the per-
formance of matching algorithms in a content-based pub-
lish/subscribe system be adjusted to adapt to the workloads? In
this paper, we explore the idea of endowing matching algorithms
with adaptability. The prerequisite for adaptability is to enable
the matching algorithm to possess the ability to dynamically
and quantitatively adjust its performance. We propose PSAM, a
Predicate-Skipping Adjustment Mechanism that realizes dynamic
performance adjustment by smoothly switching between exact
matching and approximate matching, following the strategy of
trading off matching precision in favor of matching speed. The
PSAM mechanism is integrated into an existing matching algo-
rithm, resulting in a performance-adjustable matching algorithm
called Ada-Rein. To collaborate with Ada-Rein, we design PADA,
a Performance Adjustment Decision Algorithm that is able to
make proper performance adjustment plans in the presence of
fluctuating workloads. The effectiveness of Ada-Rein and PADA
is evaluated through a series of experiments based on both
synthetic data and real-world stock traces. Experiment results
show that adjusting the performance of Ada-Rein at the price of a
small false positive rate, less than 0.1%, can shorten event latency
by almost 2.1 times, which well demonstrates the feasibility of
our exploratory idea.

Index Terms—Pub/sub, workload, adaptability, adjustability

I. INTRODUCTION

The publish/subscribe (pub/sub) system is widely deployed
in many domains to disseminate high volumes of events from
the sources (publishers) to the interested users (subscribers)
[1]. To provide scalability, an overlay topology composed
of multiple servers (brokers) is usually constructed as the
middleware to provide an event dissemination service, with
each broker performing event matching. Whenever a broker
receives an event, it is first matched with the subscribers’
interests (subscriptions) registered at the broker. According to
the matching results, the event is forwarded to the next-hop
neighbors (brokers or subscribers) or discarded directly.

Although a content-based pub/sub system provides sub-
scribers with fine-grained expressiveness, the operation of
event matching is costly and prone to be a performance
bottleneck in some dynamic environments, such as social
networks [2] and stock exchanges [3], which witness workload

0 5 10 15 20
Trading day in June, 2018

4.2

4.4

4.6

4.8

N
um

be
r o

f t
ic

ks
 (M

)

(a) Daily distribution

9:30 11:30|13:00 15:00
Trading minute on June 29, 2018

14
16
18
20
22

N
um

be
r o

f t
ic

ks
 (K

)

(b) Minute distribution

Fig. 1. The rate of producing ticks changes over time.

fluctuations over time. Specifically, when the arrival rate of
events is higher than the matching rate of a matching algorithm
running at a broker, events will be congested at the broker,
which greatly affects the transfer latency of events.

A typical scenario of such a dynamic content-based pub/sub
system is the dissemination of real-time stock ticks. To guaran-
tee latency requirements, stock exchanges send real-time ticks,
while subscribers register their interest in ticks related to their
investment strategies, e.g., when the price for a given stock
goes over or under a specified threshold. In such a setting,
the rate at which ticks are produced depends on the activities
of the stock exchange and exhibits a dynamic property which
manifests on two levels: 1) the total number of ticks varies
from day to day. For example, Fig. 1(a) shows the daily
number of ticks of the Shanghai Stock Exchange for 19
trading days in June, 2018, with fluctuations up to 18.4%;
and 2) the rate at which ticks are produced also changes at
various times in a day. Fig. 1(b) shows the rate at which
ticks are produced minute-by-minute on June 29, 2018, with
fluctuations up to 63.2% during the trading periods (9:30-11:30
and 13:00-15:00).

A common solution to this problem is to use a provisioning
technique to adjust the number of brokers to adapt to the
churn workloads [3] [4] [5]. However, this solution has several
limitations. First, the proper provisioning of brokers depends
on the accurate prediction of workload. However, the workload
experienced by a pub/sub system is by nature difficult to
predict because the rate at which events can be produced
varies significantly over time, as shown in Fig. 1(b). Second,
as discussed in [5], adjusting the number of brokers will take

tens of seconds, which may not satisfy the strict timeliness
requirements in stock market scenarios. Over-provisioning
adequate brokers in advance is simple but not cost-efficient.

The root cause of performance bottleneck is the time-
consuming event matching operation performed by brokers.
Naturally, one question is, can the performance of matching
algorithms be adjusted to adapt to workload fluctuations to
a certain degree and save critical preparation time for broker
provisioning? In general, almost every matching algorithm has
its own parameters that can be configured to optimize its per-
formance. For example, the discretization lever of Tama can be
configured to tradeoff between matching speed and matching
precision [6]. The cache size of Gen is adjustable to balance
between matching speed and storage cost [7]. Nevertheless,
most existing matching algorithms lack the adaptability to
dynamically respond to changing workloads.

In this paper, we explore the idea of endowing matching
algorithm with this adaptability, trying to address workload
fluctuations from the perspective of matching algorithms. To
realize this idea, the matching algorithm should first possess
adjustability which implies the algorithm can adjust its perfor-
mance dynamically and quantitatively. This adjustability is the
prerequisite to achieving adaptability. Furthermore, a decision
algorithm is required to make proper adjustment plans for the
matching algorithm in line with the fluctuating workloads.
The combination of adjustability and decision-making gives
birth to the desired adaptability which can deal with workload
fluctuations.

For adjustability, we propose PSAM, a Predicate-Skipping
Adjustment Mechanism that adopts the strategy to switch
between exact matching and approximate matching in order
to realize instantaneous performance adjustment by trading off
matching precision in favor of matching speed. Specifically,
we deduce two models that quantify the relationship between
matching speed and matching precision. As for decision-
making, we design PADA, a Performance Adjustment Deci-
sion Algorithm that is able to recommend proper performance
adjustment plans for matching algorithms.

The PSAM mechanism is integrated into an existing match-
ing algorithm Rein [8], giving rise to a variant named Ada-
Rein. To evaluate the effectiveness of Ada-Rein, a series of
experiments are conducted on a single machine using synthetic
data. In addition, a test bed is set up to verify the adjustment
effect of PADA in terms of event transfer latency based on real-
world stock tick traces. Experiment results show that adjusting
the performance of Ada-Rein at the price of a small false
positive rate, less than 0.1%, can shorten event latency by
almost 2.1 times, which well demonstrates the feasibility of
our exploratory idea.

The main contributions of this paper are as follows:
• We put forward the idea of enhancing matching al-

gorithms with adaptability in order to instantaneously
respond to changing workloads.

• We propose a predicate-skipping adjustment mechanism
(PSAM) and a performance adjustment decision algorith-
m (PADA) to realize this adaptability.

• We integrate PSAM and PADA into an existing algorithm
and conduct a series of experiments to evaluate the
adjustment effectiveness.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III describes the whole
framework. Section IV details the design and evaluation of
PSAM. Section V presents PADA. Section VI details the
evaluation results on a test bed. Finally, Section VII concludes
the paper.

II. RELATED WORK

In this section, we review the related work from two aspects:
parametric matching algorithms and techniques dealing with
fluctuating workloads.

A. Parametric Matching Algorithms

Since the performance of matching algorithms is critical
to a content-based pub/sub system, many efforts have been
devoted to this research area, resulting in a large number
of efficient matching algorithms, such as H-Tree [9], Be-
Tree [10], Gryphon [11], OpIndex [12], Tama [6], Siena
[13], K-Index [14], Rein [8], DEXIN [15], Gem [7] and
Mics [16]. Generally, almost every matching algorithm has
its own parameters that can be configured to optimize its
performance. For example, the discretization lever of Tama
can be configured to tradeoff between matching speed and
matching precision [6]. The number of segments split on the
attributes’ space is an optimization parameter for OpIndex
[12]. The number of indexed attributes and the number of cells
divided on the attributes’ value domain are two key parameters
for H-Tree [9]. The cache size of Gem is adjustable to balance
between matching speed and storage cost [7].

Nevertheless, there are two shortcomings in relation to the
configurability of the existing matching algorithms. First, the
configuration of most existing matching algorithms can not
be performed dynamically. For example, when needing to
adjust the matching precision of Tama [6], the underlying data
structure will be reconstructed. Second, none of the existing
matching algorithms has a parameter that can be used to
quantitatively adjust the matching performance. To overcome
these shortcomings, we propose an adjustment mechanism that
can realize dynamic and quantitative performance adjustment.

B. Techniques Addressing Fluctuating Workloads

Many researchers explore churn workloads from the per-
spective of the overlay topology, by either provisioning more
brokers or reconstructing the overlay. The work in [5] proposes
GSEC, a general scalable and elastic pub/sub service based on
the cloud computing environment, which uses a performance-
aware provisioning technique to adjust the number of brokers
to adapt to churn workloads. The works similar to GSEC
include CAPS [4] and E-STREAMHUB [3]. In [17], a dis-
tributed system called OMen is proposed for dynamically
maintaining overlays for topic-based pub/sub systems, which
supports the churn-resistant construction of topic connected
overlays. Other works utilize a load balancing strategy to deal

Receiver

Sender

Input queue

Output queue

Adjuster Matcher

Flow of events Flow of controls

Fig. 2. The component framework of a broker.

with the workload churn problem through consistent hashing
[18] [19].

There are two limitations in relation to adjusting the
provisioning of brokers to adapt to churn workloads. First,
the proper provisioning of brokers depends on the accurate
prediction of workloads which is by nature difficult to predict
in a pub/sub system since the rate at which events are produced
can vary significantly over time. A typical example is stock
ticks. Second, this kind of method can not satisfy the strict
timeliness requirements of some applications. For example,
as discussed in [5], adjusting the capacity of GSEC will take
tens of seconds to adapt to the churn workloads. Although
over-provisioning adequate brokers in advance can be a simple
solution, it is not cost-efficient.

Differing from these works, we address this problem from
the perspective of matching algorithms. The solution proposed
in this paper to deal with fluctuating workloads is not to
replace the existing provisioning techniques, but is a beneficial
complement.

III. WHOLE FRAMEWORK

A broker needs three components to collaboratively under-
take event matching, namely a receiver, matcher and sender,
as shown in Fig. 2. The receiver is responsible for receiving
incoming events from upstream peers and injecting them into
the input queue, and the sender is in charge of transmitting
events from the output queue to the next-hops (brokers or
subscribers). The matcher runs a matching algorithm that
performs selective event filtering according to the subscriptions
and is the connector between the input and the output queue.
Please note, to obtain high throughput and low latency, there
might be multiple instances running at the same time for all
or part of these three components, which is the parallelization
problem and out of the scope of this paper.

Ideally, the three components should have equivalent pro-
cessing capacity, so events will get through the receive-match-
send procedure without any delay. However, when the event
arrival rate is higher than the event matching rate, events will
be congested in the input queue and the matcher becomes a
performance bottleneck. To adapt to fluctuating workloads, a
new component called adjuster is added to the framework,
as shown in Fig. 2. The adjuster is responsible for making
performance adjustment plans for the matcher according to
the changing workloads.

To make this framework function, two points are critical.
First of all, the matcher, namely the matching algorithm,
should have the ability to dynamically and quantitatively adjust
its performance. In addition, the adjuster should recommend
proper performance adjustment plans for the matcher in line
with the fluctuating workloads. In the remainder of this paper,
we focus on addressing these two points, proposing a predicate
skipping adjustment mechanism (PSAM) to augment the ad-
justability of matching algorithm and presenting a performance
adjustment decision algorithm (PADA) to make performance
adjustment plans for matching algorithm.

IV. DESIGN OF PSAM

In this section, we detail the design of PSAM, a dynam-
ic and quantitative performance adjustment mechanism that
adopts the predicate skipping strategy to realize a switch
between exact matching and approximate matching.

A. Case Analysis

For the use case of stock event dissemination, there are 64
attributes in the Level-2 ticks and more than 1,000 attributes
derived by security agencies, such as Wind [20]. These at-
tributes can be used as references by subscribers for decision-
making. In addition, there are millions of investors who
subscribe to stock events. Mathematically, when something is
shared among a sufficiently large set of participants, there must
be a number k between 50 and 100 such that “k% is taken
by (100− k)% of the participants” [21]. This phenomenon is
called “Zipf distribution” which is found in many domains,
such as web requests [22] and Page Rank [23]. Thus, it is
reasonable to assume the attribute popularity of stock events
follows the Zipf distribution.

B. Basic Idea

The adjustability of matching algorithms implies two re-
quirements on the design of an adjustment mechanism: dy-
namics and quantification. First, performance adjustment can
be made anytime, without interrupting the normal operation
of matching algorithms. Actually, it is difficult to meet this
requirement because matching algorithms usually rely on
their underlying data structures which are time-consuming to
adjust. Second, the mechanism should support quantitative
performance adjustment. Since matching performance is al-
gorithm specific, a test bench should be selected to realize
quantification.

In existing works, some approximate algorithms are pro-
posed to pursue a high matching performance, such as Mics
[16] and Tama [6]. In terms of matching mode, matching
algorithms can be classified into two categories: exact match-
ing and approximate matching. The metrics that are used
to measure matching precision are false positives and false
negatives. When an unmatching subscription is reported as
matching by an algorithm, a false positive occurs. When a
matching subscription is not picked out by an algorithm, a false
negative occurs. For exact matching algorithms, neither false

positives nor false negatives are allowed. Approximate match-
ing is to trade off matching precision in favor of matching
speed, usually allowing for a small false positive rate. When
there exist false positives, subscribers may receive events that
are not interesting to them.

The basic idea of designing a dynamic performance ad-
justment mechanism is to realize a smooth switch between
exact matching and approximate matching in order to achieve
instantaneous performance improvement. According to the
frequency with which attributes appear in subscriptions, at-
tributes can be categorized as either popular and infrequent.
For attributes that rarely appear in subscriptions, skipping the
predicates defined on these attributes is a feasible way to im-
prove matching performance while keeping a reasonable false
positive rate. The predicate skipping adjustment mechanism
coincides with the idea of principal component analysis (PCA)
[24]. As for the quantification requirements, the key is to
quantify the relationship between the sacrificed false positive
rate and the improved matching performance. We deduce two
models characterizing this relationship.

C. Data Model

We follow the data model that is widely used in the existing
literature [6] [7] [8] [16].

An event e is expressed as a conjunction of attribute-
value pairs. The set of attributes appearing in e is defined
as A = {a1, a2, ..., am}. Each attribute appears only once
in an event expression. An interval predicate is a condition
defined on an attribute selected from A, which is represented
as a 3-tuple {ai, v1, v2} where ai is an attribute in A, v1 and
v2 are bounded by the value domain of ai, and v1 is not
larger than v2. A subscription defines a user’s interests in
events, which is a conjunction of multiple interval predicates.
Each subscription is identified by a unique identification called
subID. A subscription matches an event if all the interval
predicates contained in the subscription are satisfied when they
are assigned the corresponding attribute values of the event.

The matchability of a subscription is the matching proba-
bility that it matches events. For example, when a subscription
is matched with 100 events, if it matches 20 of them, then its
matchability is 20%. The matchability of a predicate is the
probability that it is satisfied by assigning the corresponding
attribute value in an event.

D. Matching Precision Model

In this subsection, we deduce a model to quantify the
relationship between the false positive rate and the number
of attributes to be skipped.

Suppose there is a set of n subscriptions S =
{s1, s2, ..., sn}. Let m be the number of attribute-value pairs in
events, k be the number of predicates in each subscription, and
w be the matchability of predicates. Let fi be the appearance
frequency of attribute ai in the set of subscriptions S for
i = 1, 2, ...,m. We refer to the size of a subscription s as
the number of predicates contained in s, denoted by |s| = k.

Lemma 1: Suppose the attributes of subscriptions are u-
niformly selected from the set of event attributes. When X
attributes are skipped in the matching process, the probability
Pj that a subscription contains j predicates that are defined

on the X skipped attributes is upper-bounded by
Ck−j

m−X ·C
j
X

Ck
m

for (0 ≤ j ≤ k).
Proof 1: Each event contains m attributes from which k

attributes are selected to define the predicates contained in a
subscription. This selection problem is equivalent to selecting
k balls from m ones where m − X balls are white and X
balls are red. When balls are uniformly selected, the selecting
probability of all balls, no matter white or red, is the same
at the beginning. In the first case where the selected balls are
returned, the selecting probability remains constant, which is

1
m−X and 1

X for white and red balls, respectively. However, in
the second case where the selected balls are not returned, the
selecting probability of balls decreases with each selection,
and is less than when the selected balls are returned since
each attribute appears only once in a subscription, which cor-
responds to the second case. Therefore, Pj is upper-bounded
by

Pj ≤
Ck−jm−X · C

j
X

Ckm
(0 ≤ j ≤ k) (1)

Lemma 2: Suppose the attributes of subscriptions are not
uniformly selected from the set of event attributes. Given the
X attributes to be skipped and their appearance frequency fX
in subscriptions, the probability Pj that a subscription contains
j predicates defined on the X skipped attributes is upper-
bounded by Cjk · (

fX
nk)j · (1− fX

nk)k−j for (0 ≤ j ≤ k).
Proof 2: Since the frequency of the X skipped attributes

is fX , the probability of selecting a skipped attribute can be
expressed by fX

nk . Given this probability, as proved by Lemma
1, Pj is upper-bounded by

Pj ≤ Cjk · (
fX
nk

)j · (1− fX
nk

)k−j (0 ≤ j ≤ k) (2)

Lemma 3: Given Pj for 0 ≤ j ≤ k when X attributes are
skipped in the event matching process, the expected size of
subscriptions k̄ is

∑k
j=0 Pj · (k − j).

Proof 3: When an attribute is skipped in the event matching
process, if a subscription contains a predicate defined on the
attribute, the real size of the subscriptions is reduced. For
0 ≤ j ≤ k, the probability Pj that a subscription contains
j predicates defined on the X sketched attributes is given in
Equation (2) when the appearance frequency of the X skipped
attributes is available. With the probability Pj (0 ≤ j ≤ k),
the expected size of subscriptions k̄ is

k̄ =

k∑
j=0

Pj · (k − j) (3)

Lemma 4: Given k̄, the expected false positive rate F is
wk̄−wk

wk when X attributes are skipped.

Algorithm 1 Selecting skipped attributes
Input: a false positive F and the attributes frequencies fre[]
Output: an array denoting the skipped attributes skip[]

1: Initialize skip to all False
2: Initialize total← 0
3: for i = 1→ m do
4: total← total + fre[i]
5: end for
6: Sort fre in non-decreasing order
7: Initialize sum← 0
8: for each attribute a in sorted order do
9: sum← sum+ fre[a]

10: if (total − sum)/n < k + logw(F + 1) then
11: Break
12: end if
13: skip[a]← True
14: end for

Proof 4: For a subscription si that contains k predicates
with matchability w, the matchability of si is wk. When X
attributes are skipped, all predicates defined on these attributes
are not checked. For si, it may contain j (0 ≤ j ≤ k) predi-
cates that are defined on the skipped attributes. In other words,
the size of si is shortened to k− j. Since the matchability of
si decreases monotonically with the increase of the size of si,
skipping the X attributes leads to increasing the matchability
of si which is wk−j . The false positive rate Fsi arising from
skipping the j predicates of si is

Fsi =
wk−j − wk

wk
(4)

Given the expected size of subscriptions k̄ as proved by
Lemma 3, the expectation of false positive rate F is

F =
wk̄ − wk

wk
(5)

Theorem 1: Given a false positive rate F , the number of
predicates that can be skipped in the event matching process
is Y = n(logw(F + 1)).

Proof 5: Substituting F into Equation (5) gets the expected
subscription size k̄ for the given false positive rate F .

k̄ = k + logw(F + 1). (6)

On average, k− k̄ predicates are skipped in each subscription.
The expected number of predicates that can be skipped without
offending F for n subscriptions is

Y = n(logw(F + 1)). (7)

Given a false positive rate F , the number of predicates that
can be skipped is computed according to Equation (7). Since
the appearance frequency of attributes in the subscriptions is
available, the set of X skipped attributes, As where As ⊆ A,
can be greedily determined starting from the least frequent
attributes. The pseudo code of selecting skipped attributes is
shown in Algorithm 1 with time complexity O(mlogm) where
m is the number of attributes in events.

IDVal

5 100 2.5 7.5

IDValIDVal

s4

IDVal

5 100 2.5 7.5

IDValIDValIDVal

(b) Index structure of Rein

b0 b1 b2 b3

b0 b1 b2 b3

IDVal

s7

(a) The situations of unmatching

Anchor bucket of e1 Anchor bucket of e2

1

a1e1 e2

2 3 4 5 6 7 8 9 10

s

Fig. 3. The searching strategy and index of Rein.

E. Test Bench

Given the matching precision model, the next step is to
characterize the relationship between the number of skipped
attributes and the improved matching performance. Since the
performance measurement is specific to a matching algorithm,
we select Rein [8] as a test bench to quantify this relationship
for two reasons. First, the index structure of Rein is predicate-
oriented, which well conforms to the spirit of our adjust-
ment mechanism. Second, predicates defined on the same
attribute are indexed together in Rein, independent from other
attributes. This independence makes it possible to quantify the
relationship between the matching time and matching preci-
sion, thus satisfying the quantification design requirement. To
make this paper self-contained, a brief introduction to Rein is
presented in this subsection.

1) Basic Idea of Rein: The basic idea behind Rein is to
quickly search unmatching subscriptions to indirectly obtain
the matching ones. For each attribute, situations where an
interval predicate does not match an event are: i) the attribute
value of the event is smaller than the low value of the
predicate; ii) the attribute value of the event is larger than the
high value of the predicate. These two situations are depicted
in Fig. 3(a) for event e1 : {a1 = 2} and e2 : {a1 = 8}
respectively for the predicate s : {4 ≤ a1 ≤ 7}.

2) Index Structure of Rein: Two sets of buckets are con-
structed for each attribute by dividing the attribute’s value
domain into cells and mapping the cells to buckets. One set
of buckets stores interval predicates with low values and the
other stores interval predicates with high values, as shown in
Fig. 3(b). In addition, a bit set is used to mark unmatching
subscriptions.

3) Matching Procedure of Rein: The matching process of
Rein can be divided into two stages: marking and checking.
In the marking stage, for each attribute, the event value is
mapped to the corresponding bucket (anchor bucket) in each
of the two sets. A comparison operation is performed in the
two anchor buckets, marking all unmatching subscriptions in
the bit set. For the set of buckets storing the predicates with
the low (high) values, all buckets on the right (left) side of the
anchor bucket are quickly traversed to mark all unmatching
subscriptions. In the checking stage, each bit in the bit set is
checked, and the subscriptions represented by the unmarked
bits are added to the results.

F. Matching Time Model

On the basis of the matching precision model, we further
quantify the relationship between the number of skipped
attributes and the rate of performance improvement based on
the data structure and matching procedure of Rein.

Lemma 5: Suppose the predicate values defined on the
attributes are uniformly distributed in a set of subscriptions.
For an attribute ai with frequency fi(0 ≤ i ≤ m), the bucket
size, which denotes the average number of predicates in a
bucket, is bi = fi

b .
Proof 6: In Rein, the number of buckets is b for each of

the m event attributes. For an attribute ai, when the predicate
values defined on the attribute are uniformly distributed, these
predicates are evenly stored in the b buckets, so the bucket
size is bi = fi

b . For attributes with different frequencies, their
bucket sizes are different.

Lemma 6: The matching cost of Rein is characterized by∑m
i=1 bi(2β + bγ) +mbδ + nε.
Proof 7: The matching process of Rein consists of the

marking stage and checking stage. In the marking stage, a
comparison operation and traversing operation are performed.
In the checking stage, each bit in the bit set is checked to
determine the matching subscriptions.

Given the number of buckets b and the number of attributes
m in events, let β be the unit time to compare a predicate
in a bucket, γ be the unit time to traverse a predicate in a
bucket, δ be the unit time to switch buckets when traversing,
and ε be the unit time to check a bit. When matching events,
for each attribute, a comparison operation is performed in two
anchor buckets to find the unmatching subscriptions, thus the
cost is

∑m
i=1 bi2β where ei is the bucket size of attribute ai.

After comparison, the predicates stored in the other buckets
are quickly traversed, just marking the corresponding bit in
the bit set of Rein. For the low values and high values of
predicates stored in the buckets, the whole b buckets will be
traversed, so the cost is

∑m
i=1 bibγ. In addition, the cost of

switching the b buckets is bδ for each attribute, so the total
cost is mbδ. In the checking stage, each bit is checked, so the
cost is nε. Therefore, the total matching cost of Rein can be
denoted as:

T =

m∑
i=1

bi(2β + bγ) +mbδ + nε (8)

Theorem 2: Given the set of X attributes As, the matching
performance improvement by skipping the X attributes in Rein

is R =

∑
aj∈As

bj(2β+bγ)+Xbδ∑m
i=1 bi(2β+bγ)+mbδ+nε .

Proof 8: Skipping X attributes in the matching pro-
cess of Rein decreases the comparison cost, traversing cost
and switching cost. The sum of these reduced costs is∑
aj∈As

bj(2β + bγ) +Xbδ. The total matching cost of Rein
is given in Equation (8). Therefore, the matching performance
improvement R obtained by skipping X attributes is

R =

∑
aj∈As

bj(2β + bγ) +Xbδ∑m
i=1 bi(2β + bγ) +mbδ + nε

. (9)

Algorithm 2 Ada-Rein
Input: an event e and a false positive rate F
Output: matchList

1: Determine the skipped attributes skip by Algorithm 1
2: for i = 1→ m do
3: if skip[i] == False then
4: Perform matching like Rein
5: end if
6: end for
7: for each subscription s in subscription list do
8: if the bit of s not marked in the bit set then
9: Add s to matchList

10: end if
11: end for

TABLE I
PARAMETERS USED IN EXPERIMENTS

Note Description Default value
n the number of subscriptions 1M
m the number of events attributes 1000
α the parameter of attributes’ Zipf distribution 2
k the number of predicates in subscriptions 5
w the matchability of interval predicates 0.5
b the number of buckets in Rein 500

G. Matching Procedure

Integrating PSAM into Rein gives rise to Ada-Rein which
is shown in Algorithm 2. Compared with Rein, an additional
input parameter F is needed, which indicates the expected
false positive rate of event matching. If F is set to 0, Ada-
Rein runs as an exact matching algorithm. Otherwise, Ada-
Rein works in the approximate matching mode with the spec-
ified false positive rate. The switch between exact matching
and approximate matching is dynamic and seamless, without
reconstructing the underlying index structure. Furthermore,
different events can be matched at different false positive rates.

H. Effectiveness Evaluation

In this subsection, we evaluate the quantification effect of
Ada-Rein.

1) Experiment Setup: The effectiveness of PSAM is veri-
fied on a Dell PowerEdge T710 server that has 8 2.4 GHz
cores and 32 GB memory. All codes are written in the
C++ language. For brevity, the value domain of attributes
is normalized on [0, 1.0] from which the predicate values
and event values are uniformly generated with the precision
10−6. The parameters used in the experiments are listed in
Table I. 1000 events are matched in each experiment and each
experiment is repeated 10 times. The matching time is used to
evaluate the performance of the matching algorithms. For our
testing server, the value of β, γ, δ and ε is 205.43 ns, 119.73
ns, 145.85 ns and 6.58 ns, respectively.

2) Evaluation Results: In the experiments, Ada-Rein with
different expected false positive rates is compared to Rein.
For each expected false positive rate, the number of skipped
predicates and attributes are counted, which are used to
compute the expected rate of performance improvement based
on the matching time model given in Equation (9). In addition,

400K 800K 1.2M 1.6M 2.0M
n

0

50

100

150
M

at
ch

in
g

tim
e

(m
s)

40%
28%

23%
13%

13%Ada-Rein
Rein

(a) Number of subscriptions

2 6 10 14 18
k

0

100

200

M
at

ch
in

g
tim

e
(m

s)

43%
20%

11%
8%

4%Ada-Rein
Rein

(b) Number of predicates

0.1 0.3 0.5 0.7 0.8
w

0

50

100

150

M
at

ch
in

g
tim

e
(m

s)

6%
14%

28%
38% 49%

Ada-Rein
Rein

(c) Matchability of predicates

200 600 1000 2000 3000
m

0

50

100

150

M
at

ch
in

g
tim

e
(m

s)

7%
17% 23%

38% 46%
Ada-Rein
Rein

(d) Number of attributes

1.0 1.5 2.0 2.5 3.0
α

0

50

100

M
at

ch
in

g
tim

e
(m

s)

3%
11%

24% 26% 26%

Ada-Rein
Rein

(e) Attributes distribution

Fig. 4. Effect evaluation of different parameters.

TABLE II
EFFECTIVENESS VERIFICATION RESULTS

F1 F2 Y X R1 R2

0.01% 0.0096% 93 678 17.74% 19.69%
0.05% 0.0452% 473 816 21.33% 23.46%
0.1% 0.0984% 969 874 22.87% 25.13%
0.5% 0.481% 4,707 941 24.78% 27.74%
1% 0.91% 9,138 958 25.41% 29.18%
3% 2.67% 27,736 976 26.68% 30.31%
5% 4.53% 48,856 982 27.74% 32.91%

the number of matching subscriptions of Ada-Rein is counted
in the experiment, which is compared with the one of Rein to
measure the real false positive rate. The matching time of Rein
is used as the baseline to measure the real rate of performance
improvement of Ada-Rein. The results are listed in Table II,
where n = 1M , k = 4, m = 1000, w = 0.5 and α = 2.
In the table, the six columns are expected false positive rate
(F1), measured false positive rate (F2), number of skipped
predicates (Y), number of skipped attributes (X), expected
rate of performance improvement (R1), and measured rate of
performance improvement (R2), respectively.

As shown in the table, the measured false positive rate and
performance improvement are very close to the expected ones
respectively, well demonstrating the effectiveness of PSAM.
Specifically, the measured false positive rate is a little smaller
than the expected one while the measured rate of performance
improvement is not less than the expected one. The philosophy
behind this is that the expected false positive rate should
be an upper bound, limiting the costs; while the expected
performance improvement should be a lower bound, ensuring
the gains.

The performance improvement does not linearly grow with
the false positive rate. This phenomenon is explainable. At
the beginning, even with a small false positive rate, a certain
number of infrequent attributes are skipped. Thus, the obtained
performance improvement is considerable. For example, when
the expected false positive rate is 0.01%, the measured rate
of performance improvement is 19.69%. In this case, 678
infrequent attributes out of 1000 ones are skipped. However,
increasing the false positive rate does not bring proportional
performance improvement. For example, when the expected
false positive rate is 0.1%, the measured rate of perfor-
mance improvement is 25.13%. Although the false positive
rate increases tenfold compared with 0.01%, the performance
improvement only grows 27.6%. This is because by increasing
the false positive rate 10 times, only 195 additional attributes
are skipped without offending the expected false positive

rate. Therefore, from the viewpoint of cost-effectiveness, the
“Elbow Rule” can be used to determine the expected false
positive rate [25]. In this experiment, Ada-Rein with a false
positive rate less than 0.1% is more cost efficient. So, in the
next experiments, we compare Ada-Rein of 0.1% false positive
rate with Rein to evaluate the impact of different parameters.

a) Impact of the number of subscriptions: The perfor-
mance improvement of Ada-Rein gradually diminishes with
more subscriptions, as shown in Fig. 4(a). When n = 400K,
the improvement is 40%; but when n = 2M , the improvement
reduces to 13%. Fixing the number of event attributes and the
number of predicates contained in the subscriptions, increasing
the number of subscriptions leads to growing the frequencies
of attributes, which reduces the number of infrequent attributes
to be skipped while satisfying the expected false positive rate.

b) Impact of the number of predicates: With less pred-
icates contained in the subscriptions, the benefit of Ada-rein
is more apparent, as shown in Fig. 4(b). When k = 2, Ada-
rein makes about a 43% performance improvement over Rein
whereas the improvement reduces to only 4% when k = 18.
The cause of this issue is due to the increased frequencies
of attributes, as explained in the previous experiment. For
such subscriptions, skipping even a small number of attributes
will offend the expected false positive rate, which limits the
adjustment space of Ada-Rein.

c) Impact of the matchability of predicates: Subscrip-
tions with high matchability are beneficial for Ada-Rein, as
shown in Fig. 4(c). When w = 0.1, Ada-Rein is faster than
Rein by only 6%, however the performance improvement is up
to 49% when w = 0.8. This behavior of Ada-Rein is related
to the negative searching strategy employed by Rein which is
favorable of subscriptions with high matchability.

d) Impact of the number of attributes: High-dimension
space is beneficial for Ada-Rein, as depicted in Fig. 4(d).
Given the total number of predicates, the number of infrequent
attributes will increase with higher dimensions, providing
sufficient candidates for Ada-Rein to select attributes to be
skipped. When m = 200, Ada-Rein has trivial performance
improvement over Rein; when m = 3000, the improvement
increases to 46%.

e) Impact of attribute distribution: Ada-Rein prefers a
skewed frequency distribution of attributes, as shown in Fig.
4(e). When the popular attributes are concentrated, more
attributes belong to the infrequent category, which provides
more candidates for Ada-Rein to skip without offending the
expected false positive rate. In the case α = 1.0, there is

only 3% performance improvement of Ada-Rein over Rein.
However, when α = 3, the improvement is up to 26%.

In summary, given the number of attributes, increasing
the total number of predicates by raising either the number
of subscriptions or the number of predicates contained in
subscriptions will shrink the effectiveness of Ada-Rein. Given
the total number of predicates, Ada-Rein has larger adjustment
space by increasing the matchability of predicates, raising the
number of attributes, or making the attributes more skewed.

V. DESIGN OF PADA

Given a performance adjustable matching algorithm Ada-
Rein, the next thing is to design a performance adjustment
decision algorithm (PADA), which is the focus of this section.

Instead of making the adjustment plan according to the
congestion degree of events at brokers, we specify an upper
bound on the false positive rate Fmax by analyzing the cost-
efficiency between false positives and performance improve-
ment, for the following reasons. First, the position of our
proposed solution is clear, as a complement to the broker
provisioning techniques to deal with workload churn to a
certain extent. Second, when the performance of the matching
algorithm needs to be improved, the contention of network
resources is also intense. Allowing a larger false positive rate
will deteriorate the network contention.

Making adjustment plans is in essence a control problem
and we borrow the spirit of PID [26] to design PADA which
is detailed in Algorithm 3. The rationale of this algorithm is
to make a trade-off between matching speed and matching
precision, by adjusting the false positive rate F in a self-
adaptive way. When the broker receives an event e (Line
2), it first calculates how long this event has been waiting
in the input queue (Line 3), which reflects the congestion
degree of events at the broker. If the latency is larger than the
normal one t threshold (Line 4), it can be inferred that events
are congested at the broker at this moment. Furthermore, if
the congestion degree of e is more serious than that of the
last event, F is increased to further improve the matching
performance (Line 6), otherwise keeping F constant (Line
8), where F is subjected to the upper bound Fmax (Line
10). Similarly, when the congestion of events is alleviated,
F is gradually decreased in order to achieve high matching
precision (Line 11−17). As can be seen, PADA will adaptively
converge to the case where exactly no congestion occurs at
the broker, and the false positive rate is minimized. The time
complexity of PADA is O(1) to determine a false positive rate
for each event.

VI. EXPERIMENT RESULTS

A. Experiment Setup

A test bed composed of three virtual machines (VMs)
is set up to evaluate the adjustment effect of Ada-Rein in
collaboration with PADA. Each VM has 4 vCPUs, 8GB RAM
and 80GB hard drive. Two VMs are used to imitate a publisher
that generates events at changing rates and to simulate a certain
number of subscribers who submit subscriptions to the broker

Algorithm 3 PADA
1: F ← 0, Flast ← 0, t← 0, tlast ← 0;
2: for each incoming event e to the broker do
3: t← the latency of e
4: if t ≥ tthreshold then
5: if t ≥ tlast then
6: F ← Flast + ∆F

7: else
8: F ← Flast
9: end if

10: F ← min{F, Fmax}
11: else
12: if t < tlast then
13: F ← Flast −∆F

14: else
15: F ← Flast
16: end if
17: F ← max{F, 0}
18: end if
19: e is matched by Ada-Rein in Algorithm 2 with F
20: Flast ← F, tlast ← t
21: end for

respectively. Ada-Rein and PADA are run at the third VM
which acts as a broker. We modify the source code of Siena1

to implement Ada-Rein and PADA in the pub/sub service.

B. Dataset

We collected Chinese stock market data generated on March
22, 2018 from the Wind Economic Database2. There are 616
attributes in the tick data from 10:00 A.M. to 11:30 A.M.
which is used to generate the subscription set and event set.
We set the event generation rate in our experiments to be
proportional to the actual generation rate in the dataset. In this
sense, the rate at which events are produced well simulates the
workload fluctuations of the real-world stock exchanges.

The experiment procedure can be divided into two stages:
submitting subscriptions and publishing events. In the first
stage, 100, 000 subscriptions are synthesized and submitted
to the broker. Each subscription contains five predicates and
the matchability of predicates is set to 0.3. The selection
of subscription attributes follows the Zipf distribution with
α = 2. In the second stage, the publisher generates events
at a changing rate that is proportional to the real one in the
stock dataset. Whenever the broker receives an event, it judges
the congestion degree, determines the allowed false positive
rate, matches the event with the subscription, and sends the
events to the interested subscribers. We measure the overall
latency of events from generation to the moment when each
interested subscriber receives the events. The publish stage
lasts 30 seconds and the average latency of events at each
second is calculated. Since the system workload is fluctuating,
we anticipate that the average latency at each second will vary
with the workloads.

1http://www.inf.usi.ch/carzaniga/siena/
2http://www.wind.com.cn/en/

0 10 20 30
Second

100

200

300
Pr

od
uc

in
g

ra
te

(a) Changing workloads

0 10 20 30
Second

50

100

Ev
en

t l
at

en
cy

 (m
s) Ada-Rein

Rein

(b) Event latency

Fig. 5. The changing workload and event latency.

C. Experiment Results

The changing workload is shown in Fig. 5(a). The average
publishing rate is 131.17 events per second and the fluctuation
degree is up to 767.57%. In the experiment, the PADA algo-
rithm is used to determine the false positive rate for each event
where Fmax = 0.1%, ∆F = 0.01%, and tthreshold = 5ms.

The event latency calculated at each second is shown in Fig.
5(b). Overall, the average event latency of Ada-Rein is short-
ened by 2.09 times compared to Rein, reducing from 57.11 ms
to 27.32 ms. The reason for this is that when encountering a
workload spike, Rein does not have the adjustability to adapt
to the changing workloads, thus events are congested at the
broker, forming a cumulative effect on event latency. On the
contrary, Ada-Rein has the ability to alleviate event congestion
to some extent, stabilizing the latency of events. The standard
deviation of the event latency of Ada-Rein is improved by
almost 1.65 times compared to Rein, decreasing from 33.19
to 20.07.

VII. CONCLUSIONS

In this paper, we explore the idea of enhancing the adapt-
ability of matching algorithms to deal with workload fluctua-
tions. To do so, we propose a Predicate-Skipping Adjustment
Mechanism (PSAM) and a Performance Adjustment Decision
Algorithm (PADA). The integration of PSAM into Rein gives
rise to Ada-Rein. In collaboration with PADA, Ada-Rein is
able to deal with workload fluctuations to a certain extent. To
evaluate the adjustment effectiveness of Ada-Rein and PADA,
a series of experiments are conducted based on both synthetic
data and real-world stock tick data. The experiment results
show that, even after adjusting the performance of Ada-Rein
at the price of a small false positive rate, less than 0.1%,
event latency can be shortened by almost 2.1 times, which
well demonstrates the feasibility of our exploratory idea.

ACKNOWLEDGEMENT

This work was supported by National Key R&D Program of
China (2017YFC0803700), the National Science Foundation
of China (61772334, 61702151), the Joint Key Project of the
National Natural Science Foundation of China (U1736207),
and Shanghai Talent Development Fund, Shanghai Jiao Tong
arts and science inter-project (15JCMY08)..

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[2] A. Shraer, M. Gurevich, M. Fontoura, and V. Josifovski, “Top-k publish-
subscribe for social annotation of news,” Proceedings of the Vldb
Endowment, vol. 6, no. 6, pp. 385–396, 2013.

[3] R. Barazzutti, T. Heinze, A. Martin, E. Onica, P. Felber, C. Fetzer,
Z. Jerzak, M. Pasin, and E. Rivière, “Elastic scaling of a high-throughput
content-based publish/subscribe engine,” in IEEE ICDCS 2014, pp. 567–
576.

[4] X. Ma, Y. Wang, X. Pei, and F. Xu, “A cloud-assisted publish/subscribe
service for time-critical dissemination of bulk content,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 8, pp. 1–15, 2017.

[5] Y. Wang and X. Ma, “A general scalable and elastic content-based
publish/subscribe service,” IEEE Transactions on Parallel & Distributed
Systems, vol. 26, no. 8, pp. 2100–2113, 2015.

[6] Y. Zhao and J. Wu, “Towards approximate event processing in a large-
scale content-based network,” in IEEE ICDCS 2011, pp. 790–799.

[7] W. Fan, Y. Liu, and B. Tang, “Gem: An analytic geometrical ap-
proach to fast event matching for multi-dimensional content-based
publish/subscribe services,” in IEEE INFOCOM 2016, pp. 1–9.

[8] S. Qian, J. Cao, Y. Zhu, and M. Li, “Rein: A fast event matching
approach for content-based publish/subscribe systems,” in IEEE INFO-
COM 2014, pp. 2058–2066.

[9] S. Qian, J. Cao, Y. Zhu, M. Li, and J. Wang, “H-tree: An efficient index
structurefor event matching in content-basedpublish/subscribe systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 6,
pp. 1622–1632, 2015.

[10] M. Sadoghi and H.-A. Jacobsen, “Be-tree: an index structure to efficient-
ly match boolean expressions over high-dimensional discrete space,” in
ACM SIGMOD 2011, pp. 637–648.

[11] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra, “Matching events in a content-based subscription system,” in
ACM PODC 1999, pp. 53–61.

[12] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient publish/subscribe
index for e-commerce databases,” Proceedings of the VLDB Endowment,
vol. 7, no. 8, pp. 613–624, 2014.

[13] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based network,”
in ACM SIGCOMM 2003, pp. 163–174.

[14] S. E. Whang, H. Garcia-Molina, C. Brower, J. Shanmugasundaram,
S. Vassilvitskii, E. Vee, and R. Yerneni, “Indexing boolean expressions,”
Proceedings of the VLDB Endowment, vol. 2, no. 1, pp. 37–48, 2009.

[15] W. Fan, Y. A. Liu, and B. Tang, “Dexin: A fast content-based multi-
attribute event matching algorithm using dynamic exclusive and inclu-
sive methods,” Future Generation Computer Systems, vol. 68, pp. 289–
303, 2017.

[16] H. Jafarpour, S. Mehrotra, N. Venkatasubramanian, and M. Monta-
nari, “Mics: an efficient content space representation model for pub-
lish/subscribe systems,” in ACM DEBS 2009, pp. 1–12.

[17] H. A. Jacobsen, H. A. Jacobsen, and H. A. Jacobsen, “Omen: overlay
mending for topic-based publish/subscribe systems under churn,” in
ACM DEBS 2016, pp. 105–116.

[18] J. Gascon-Samson, F. P. Garcia, B. Kemme, and J. Kienzle, “Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud,” in IEEE ICDCS 2015, pp. 486–496.

[19] A. K. Y. Cheung and H. A. Jacobsen, “Load balancing content-based
publish/subscribe systems,” Acm Transactions on Computer Systems,
vol. 28, no. 4, pp. 1–55, 2010.

[20] “Wind.(2018). [online].” http://www.wind.com.cn/.
[21] G. K. Zipf, “Relative frequency as a determinant of phonetic change,”

Harvard studies in classical philology, vol. 40, pp. 1–95, 1929.
[22] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and

zipf-like distributions: Evidence and implications,” in IEEE INFOCOM
1999, vol. 1, pp. 126–134.

[23] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” international world wide web conferences, vol. 30, pp.
107–117, 1998.

[24] P. Baldi and K. Hornik, “Neural networks and principal component anal-
ysis: Learning from examples without local minima,” Neural Networks,
vol. 2, no. 1, pp. 53–58, 1989.

[25] R. L. Thorndike, “Who belongs in the family?” Psychometrika, vol. 18,
no. 4, pp. 267–276, 1953.

[26] K. H. Ang, G. Chong, and Y. Li, “Pid control system analysis, design,
and technology,” IEEE Transactions on Control Systems Technology,
vol. 13, no. 4, pp. 559–576, 2005.

